
A Study of Convergence of the PMARC Matrices applicable to WICS

Calculations

/-

by

Amitabha Ghosh

Department of Mechanical Engineering

Rochester Institute of Technology

Rochester, NY 14623

Final Report

NASA Cooperative Agreement No: NCC 2-937

Presented to

NASA Ames Research Center

Moffett Field, CA 94035

August 31, 1997

Table of Contents

Abstract .. 3

Introduction .. 3

Solution of Linear Systems 4

Direct Solvers .. 5

Gaussian Elimination: 5

Gauss-Jordan Elimination: 5

L-U Decompostion: 6

Iterative Solvers .. 6

Jacobi Method: 7

Gauss-Seidel Method: 7

Successive Over-relaxation Method: 8

Conjugate Gradient Method: 9

Recent Developments: 9

Computational Efficiency 10

Graphical Interpretation of Residual Correction Schemes 11

Defective Matrices , 15

Results and Discussion 16

Concluding Remarks 19

Acknowledgements 19

References ... 20

Appendix .. 20

Table 1: Comparison of Various Methods for Small Matrices 21

Table 2: Comparison of the Methods applied to Hilbert Matrices of different sizes... 22

Table 3: Comparison of Various Methods for a PMARC Matrix of Size 2004 x 2004..23

Program Listings: 23

2

Abstract

This report discusses some analytical procedures to enhance the real time solutions of PMARC

matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented

at the 12 foot Pressure Tunnel WICS calculations involve solving large linear systems in a reasonably

speedy manner necessitating exploring further improvement in solution time. This paper therefore

presents some of the associated theory of the solution of linear systems. Then it discusses a

geometrical interpretation of the residual correction schemes. Finally some results of the current

investigation are presented.

WlCS is a combined experimental and computational approach to correct for the wall interference

effects in wind tunnel testing. The procedure involves replacing the test model by a combination of

mathematical singularities. The use of the model force and moment measurements together with the

wind tunwel wall pressure measurements facilitate calculation of the unknown strengths of sources

and doublets representing the model and the support system The main benefit of the WlCS procedure

is in the pare-calculation of a database using the P!vlARC influence coefficient matrices. Often this

process takes several days depending upon the number of singularities and panels in the model

Moreover the influence coefficient matrices arising from WICS calculations are neither sparse nor

symmetric. Thus exploring a better linear solver would be a worthwhile effort. With this objective in

mind, this investigation attempted to answer some of the related issues of the solution of linear

systems.

This report re-visits some popular direct and iterative methods of solution of linear systems and

systematically compares their performance for solution of large systems. For some time the

convergence difficulties of PMARC matrices applicable to WlCS calculation was believed to be ill-

conditioning of the influence coefficient matrices. Thus the early part of this research was devoted

to the study of ill-conditioning. As explained later, this issue was resolved by using double precision
arithmetic, after it had also been established that the WlCS matrices were indeed well-conditioned.

There is no reason to suspect that such issues will arise again in WICS calculations. Thus the present

focus is the speed of calculation.

As a preliminary set of geometrical ideas was developed, the interpretation of iterative solution

procedure was attempted on small matrices. Preliminary results were not very promising when applied

to typically large systems however. Computational efficiency was hampered in large matrices due to

a large number of error-accumulating procedures. The tests finally suggested exploring the current

linear solver in PMARC [1] in conjunction with the developed geometrical ideas, which resulted in

improved performance.

The questions of solving large linear systems will always arise in our applications since internal flow

models involving PMARC will typically grid the major portions of a whole wind tunnel However,

the issues arising fi'om supercomputing and parallel processing will not be attempted here since they

involve different strategies.

The basic layout of this report covers both theory and computational experiments. The theoretical

ideas are substantiated by geometrical interpretations for small matrices. However large matrices

involving very large solution data fries are not presented as outputs. Instead, their performance is

compared with respect to computational run time using double precision arithmetic. These are

presented in a tabular fashion and discussed in the results section. The actual fortran programs that

were developed under this project are available on the sr71 and ra-iris systems at NASA-Ames and

the author's home directory at Rochester Institute of Technology. Some sample fortran programs are

attached herewith in the appendix.

Solution of Linear Systems

This field of study i.s very old and practically arises in any area of mathematical interest. The basic

techniques of linear algebra are learnt in a variety of ways from high school mathematics through

higher levels involving ideas from topology. The characteristic of all linear systems consists of a

set of coefficients and unknowns related by a system of equations which never involve any powers

of the unknowns more than one, neither do any of the equations involve any products of two

unknown quantities. In a basic appearance we shall call such a set of equations an n-dimensional

linear system, given by

at_ x_ + a_2 x 2 + a_3 x 3 + + a,. x_= b_
a,2_xt + azz xz + a23 x3 + + a_ x_ = bz

a31 xl + a3z x2 + a33 x3 + + a3a xa = b3

• o o • o

• • • • . ° . . o , . o . . o . o , ° , o

a_xt + a_x2 + a,3 x3 + +an, x,=b_

(1.1)

(1.2)

(1.3)

(1.n)

In the above system, the right hand terms b_ through b, are all known, as well as, any terms involving

the letter "a" with subscripts. The right hand known constants are expressible by a column vector b

of size n, and the unknown variables x_throughx, may be expressed by another column vector x. Thus

the linear system may be expressed in a more compact form by A x = b, such that A is a matrix of size

(n x n) [i.e., n rows and n columns].

There are various questions of to answer about the existence of solutions and solvability which

involve the matrix A of different numbers of rows and columns. However in our applications database

no such cases will arise. Thus we shall always focus on a linear system that poses a unique solution

and all the solutions arrived at by various means will involve real numbers. Also our system of

4

equationswill be non-homogeneous,i.e., the vector b will never be a null vector. When a

homogeneous system of n linear equations are solved, the determinant of A must be zero. Although,

such systems involving eigenvalues and eigenvectors will be discussed later, the main thrust of the

solution will involve numerical procedures adopted for non-homogeneous systems.

The focus of this investigation is in developing and understanding computational approaches. Thus

traditional solutions of non-homogeneous linear systems given by Cramer's rule, cofactors and

evaluation of determinants will be omitted here since these techniques are very expensive

computationaUy. The traditional direct solvers include the Gaussian elimination technique, Gauss-

Jordan technique and the L-U decomposition technique.

Direct Solvers

Gaussian Elimination:

In this approach the idea is to triangularize the matrix A through a set of algebraic reductions such

that the resulting matrix A' is a strictly upper triangular form. There are different ways to achieve

this. The most popular technique yields the diagonal elements of A' as one. The corresponding

right hand column vector b' after the reductions are utilized in a back substitution process to

solve for the unknown vector x. The reason Gaussian elimination is claimed as a direct solver is

because, with sufficient accuracy, the calculations need to be performed only once. With single

precision arithmetic however, on some limited memory computers, the calculations may need to

be iterated using an error equation technique.

Although the process of Gaussian elimination is simple, it does not involve the least amount of

calculational efforts. It may be shown that the calculations involved in such processes are of the

order of n3 operations. There are some associated computational questions to produce robustness

in such calculations for a general matrix. These involve rearranging the equations so that the

diagonal elements of A are always the largest. These are called the row pivoting and the column

pivoting operations. The examples quoted for comparisons later in this report always involved a

partial row pivoting strategy (for example, see the 9 x 9 truss problem later).

Gauss-Jordan Elimination:

This is a step further fxom the Gaussian elimination process. In this method the eliminations of the

coefficients are carried out not only below the diagonal but above the diagonal also. The

advantage of this method is that the reduced matrix A' is a diagonal one, eliminating the need for

the back substitution process, which is a characteristic of the previous technique. The choice to

use the Gaussian elimination or the Gauss-Jordan elimination is a personal one since the

associated procedures involve the same amount of computational efforts. Thus Gauss-Jordan

technique is not claimable as an improvement over the Gaussian elimination process. For example,

5

thesubroutinegss in the current solver in PMARC is a Gauss Jordan one.

L-U Decompostion:

The ideas of Gaussian elimination is extended another step in the L-U decomposition process. There

are different authors for such methods (for example Crout's method, Doolittle's method, etc).The idea

is to obtain a simultaneous upper and lower triangulafization of the original coefficient matrix A, such

that A = L.U. There is again no direct advantage of adopting this procedure for computational
efficiency over the Gaussian elimination technique. However such decomposition ideas are

worthwhile to understand the direct and iterative numerical techniques presented later. Thus although

no separate consideration of this technique will be presented in this report, note that the QR

decomposition technique quoted later to check the ill-conditioning of the PMARC coefficient

matrices involved such triangularization ideas.

In summary, the direct solvers available in literature today are all variations of the Gaussian

elimination process. There are several different methodology to obtain solutions of linear systems by

direct solvers. However since all direct solvers involve associated computations with the whole

coefficient matrix A, there is no apparent computational benefit over the original Gaussian

elimination, since all involve n 3 arithmetic operations.

Iterative Solvers

Iterative solvers became more popular with the advent of high speed computers. There are several

benefits of choosing an iterative solver over a direct solver. Simple iterative solvers invariably

reduce the programming efforts. However the more sophisticated ones may involve considerable

amount of complex programming since they can act as a black box for the end user. The

development of a robust calculation procedure has its roots in the linear algebraic techniques far

beyond the reach of the end user. We however wiU-develop some geometrical approaches here in

an effort to understand the basic iterative techniques. There is a difficulty in presenting

geometrical ideas beyond three dimensions. The visualization handicap will be supplemented by

algebraic reasoning. The sections below present the basic and the more recent iterative solution

procedures.

To give an example of an iterative process, let us assume an equation: ax z + bx + c = 0, where, a,

b and c are constants and x is the unknown variable. We wish to determine the unknown variable

x by repetitive calculations called iterations. Note that the equation's solution can be determined

by the quadratic formula x = {-b _.+,/(b z - 4 a c)}/(2a). However that will be considered a direct

analytic solution. Instead an iterative procedure may be set up by casting the above equation into

the following form x(ax+b) = -c, followed by, x = -c/(ax+b). Thus a new value of x may be

determined from a guessed value of x by the last equation. This is formalized by writing the

6

equation as xe'+_) = -c/(ax c') +b), where (k) represents the iteration number. In this process, the

guessed solution will be changed and hopefully will be converged to the analytic solution of the

equation. The theory behind solution of linear equations by iterative processes involves study of

the procedures and errors associated with iterations and whether or, how quickly the calculated

solution can be converged to the analytic solution. Note that contrary to this non-linear example,

our system of equations is linear and associated unknown x is a vector with n components. Given

below are the popular iterative solvers for linear systems.

i/af..Ql M.e,.tll k

This technique is the most basic form of relaxation methods and is listed here for reference. The

actual procedures adopted in this report did not employ this except to calculate part of the solution

in the successive over-relaxation scheme. The point Jacobi technique involves decomposing A as
follows.

The matrix A may be decomposed into a diagonal matrix D, an upper triangular U and a lower

triangular matrix L. Then the resulting linear system may be written as

D x °'+1) = -(L + U) x °° + b,

where, (k) is the iteration number.

Thus the solution of the point Jacobi scheme may be sought using

x °'.1) =- D v (L + U) x °° + D l b

In the above equation, the matrix, Tj = - D * (L + U), is called the associated point Jacobi iteration

matrix of the linear system A x = b. Note that the second matrix D L b of the right hand side of the

above equation is a known static vector, which will not change during the solution process. Whether

the solution of the point Jacobi method converges to the analytical solution of the linear system

depends on the norm of the iteration matrix being less than one. It may be shown that this condition

on the norm is satisfied if the coefficient matrix A is strictly diagonally dominant.

The speed of calculation in a point Jacobi scheme is slow compared to the processes discussed below

since the iteration vector x _'÷n gets modified only once in each iteration.

Gauss-Seidel Method:

If the same decomposition that was used in the point Jacobi scheme is organized a little differently,

the speed of calculations can be considerably improved. This method upgrades the vector x

continuously within a single iteration using the most recent values of the components of x that are

7

available.TheresultingschemeiscalledthepointGauss-Seidelscheme,where,

x°'÷1)= - (D + L)1 (U) x°°+ (D + L)1 b

where,theiterationmatrixisTQs= - (D + L)_ (U).

Thepoint Gauss-Seidelschemeisconvergentif andonlyif lff'asll_ 1.This condition may again be

guaranteed if the matrix A is strictly diagonally dominant. The Stein-Rosenberg theorem relates the

convergence and the matrix norms of the Jacobi and Gauss-Seidel iteration matrices [2].

Successive Over-relaxation Method:

The best speed of calculations utilizing the ideas of the point Jacobi and Gauss-Seidel schemes may

be derived by a linear combination of those two solutions. The resulting scheme is called the point

successive over-relaxation scheme (or, simply S.O.R scheme). Here the linear combination of the

point Jacobi solution, xj and the point Gauss-Seidel solution, X_s is achieved to yield XsoR as

Xsoa = 60XGs + (1 - 60) xj

In the above equation, 60 is called the relaxation parameter. It ranges in values typically between 0

and 2. However, higher values are possible to yield a convergent solution. When the value of 60 is

less than 1 the process is called under-relaxation and when 60 is greater than one the process is called

over-relaxation. Although 60 is typically a constant, it may be chosen as a variable too. In each

problem an optimum value of the relaxation parameter may be found analytically as well as by

performing computational experiments. The iteration matrix of the point S.O.R scheme is given by

Tso R=-(D+60L) "l [60L+(1-60) U].

Using the substitutions of P = D 1L and Q = D _ U, we may re-write the above as

Tso R = - (I + 60p).t [Q + (1 - 60) I]

where, I s the identity matrix of size n x n.

Two important theorems by Ostrowski and Reich relate the iteration matrices of Gauss-Seidel and

S.O.R. processes [2]. The important condition which guarantees convergence of the above matrices

in the complex space is that the component matrices L, U and D be Hermitian and positive def'mite.

In the applications of our interest, a real, symmetric and diagonally dominant matrix A would meet

all the conditions above if the acceleration parameter may be maintained in the range 0 to 2.

8

Conjugate Gradient Method:

All relaxation processes have the basic idea of reducing the residual vector r [= b - A x] as the

calculation proceeds from iteration to iteration. There are different procedures defined dependent on

the search direction to modify the trial vector for x. One of the most successful procedures is called
the conjugate gradient method. In this process, the trial vector, v is modified as follows:

v'=v+tp

where, t is a scalar, v' is the new trial vector and p is the direction vector in which the new solution

vector, v' must be searched. The direction of p must not be chosen perpendicular to the error vector

because then there will be no improvement in the solution vector v'. If the direction of p is chosen

same as the error vector the previous iteration step, we get the steepest descent method. If the

direction ofp is chosen as same as a weighted constant factor times the previous step's erro'r vector

the resulting procedure is called the simultaneous displacement or the Jacobi iteration procedure. The

best selection of p comes from satisfying the relationship

A p0O. p0,-t) = pC,). A p_"'_ = 0

This is the basis of the so called conjugate gradient method. In the above relation, the dot indicates

the inner product of two vectors. The vector p0,_is taken as a linear combination of rc't) and pC,-L_.

In this procedure, the residual vectors and p with Ap form two orthogonal systems, hence the name
conjugate gradient method.

The conjugate gradient method is by far the best relaxation method among the traditional iterative

procedures. The convergence in this process is quadratic and is guaranteed within n iterations where

n x n is the size of the matrix A. The only drawback is that the matrix to analyze is required to be

symmetric. There are variations of the conjugate gradient method possible for asymmetric matrices.

However, as mentioned in the section below and substantiated by the results later, the best scheme
tested in this investigation is a variant of the Lanczos method.

Recent Developments:

As we shall see in the graphical interpretations of the program gsol later, the search of the solution

vector is facilitated by a choice of an orthonormal basis. QR factorization schemes and procedures
associated with the Gram Schmidt orthogonalization yield such orthormal bases. However, if the basis

can he established in an elegant way there are significant computational advantages.

In any iterative solution the Markov chain converges depending on the eigenvalues of the iteration

matrix. If the largest eigenvalue is less than one convergence is assured. However the speed of

convergence is also associated with the closeness of the eigenvalues. These ideas prompted a host

of procedures [3, 4, 5, 6] related to the determination of eigenvalues. For large matrices the speed

9

of calculationisof primeimportance.If thereisawaytodeterminesearchdirectionswhilethematrix
sizesarerelativelysmallandself-correcttheprocesswhileprogressivelylm'germatricesarehandled,
theprocesswill surelybemoredesirable.Thebasisof thecurrentsolverin PMARChasthis structure

in the subroutine lineq. TMs procedure is based upon Davidson's method [7] of determination of a

few of the smallest eigenvalues and eigenvectors of a large matrix.

Computational Efficiency

There are several ways computational efficiency is measured in solving linear systems. Most

computational processes are dictated by the accuracy in calculations. This is very important in

both direct and iterative solution methods. However accuracy plays different roles in these two

methods. While direct solvers must be very accurate because calculations are performed only

once, iterative solvers can handle more errors in early iterations if they can be annihilated rapidly.

There is also the question of conditioning of matrices. If a matrix is well conditioned, any small

perturbation in the coefficients will not produce large perturbations in the solution vector.

Assuming the matrices to explore are well conditioned, errors can only be of one kind - rounding

errors. Unless any solution scheme models after application of some series, there is no concern

about truncation errors. Rounding errors can be measured as loc_l and g!.obal. Local errors that

take place during each iteration become of global nature when all iterations cumulatively affect

calculations. A classic example of sensitivity of a solution scheme on global errors is the Lanczos

scheme. For quite some time, this elegant method was overlooked because the failures were not

pegged down to cumulative errors. This important lesson that the author learnt is reflected in the

design of gsol.

The speed of calculations is reflected in the number of arithmetic operations that each scheme is

required to perform. The analytical estimate is typically related to the size of the matrix, n. For

example, a scheme requiring n _ operations would take approximately 8 times the computational

effort if the size of the matrix is doubled. The other measure of speed as discussed before (for an

iterative process) is going to be reflected in how rapidly the residuals are annihilated. This is

typically measured by the ratio of the absolute values of the residual norms between two

successive iteration steps. This can also be assessed by the Euclidean norm of the iteration matrix.

Another measure of computational efficiency is given by robustness. A robust calculation

procedure will normally not fail if the conditions of matrix coefficients, the right hand side column

vector, the starting guess solution, etc. change. This was the focus in the early part of this work.

Finally, modern linear algebra has been tremendously impacted by the architecture of computers.

As the demand of speed increases, the concepts are modified to suit the need. Today the product

of two matrices are done by block concepts much more than the conventional earlier methods. If a

matrix is symmetric, half data storage is exploited. These and parallel architecture are keys of

modern computing. This work exploited some storage optimization for 2004 x 2004 matrices

primarily from the need to save memory on the sr71 machine. Also some modularization was

10

adoptedfor programmingease.Otherconceptsof modemarchitecturewerenot exploited.

Graphical Interpretation of Residual Correction Schemes

In this section we shall explore the geometrical ideas associated with residual correction methods.

The ideas will be developed from geometrical to algebraic reasoning for higher dimensions. Let A

x = b be represented for a planar case first. Let a u xl + a12 x2 = b, and a,, x, + a,2 x2 = b2 represent

two straight lines in the x-y plane given by OP and OQ, with O as their point of intersection. The

point O's coordinates are the so called solution of this system of equations which we wish to

arrive at iteratively. Let the point S represent the coordinates of the starting guess solution. To

reach the point O from S, let us first drop a perpendicular on OP from S. Let the point of

intersection be A. Subsequently another perpendicular may be dropped on OQ from A. Let that

point of intersection be B. With the knowledge of the points A and B we may drop one last

perpendicular from B on OP to obtain C. Then the solution O of the system may be arrived at

from A in one movement along AC by the amount AO, where, AO = AB2/AC.

Y

Q

s

o

A

FiIpmD 1.

This may be shown easily from the similar triangles OAB and ABC where the angle CAB is

common. Instead of using the direct value from this formula for AO, suppose there is a multiplicating

factor _ used with AO to reach O from A. This may be viewed upon as an accelerating factor in

higher dimensions. For a set of n equations in n unknowns,

resl = b_ - [an at2 at3 at.] • Xs, represents the residue from the fast equation, which also

represents the perpendicular distance of the point O from the hyperplane:

a, xt + at2 x2 + at3 x3 + + at. x_ = b t

Now this distance can be used to arrive at the point A if a component can be used in the direction

toward A to obtain the position vector xA. Thus,

x4"xa +
re#J

lall alz a13 al.! z [all alz a13 ... r

11

In asimilarmanner,xBmaybewrittenfrom xAas

xm=xA+
res2

last a22 a._ a._l _
... az,,1r

where, res2 = th - [a21 azz a_ a_. xA. Similarly Xc may be obtained from xB by projecting into

the first hyperplane again. After C is obtained a single evaluation of O is made with the relaxation

factor w. Then the resulting point becomes a new point O and the process keeps repeating. In this

manner, each new equation is selected from a set of n equations and the projections are made on the

first hyperplane. This is the basis of the program qmconj given in the appendix.

An alternate to the above program will be instead of projecting each new residue onto the first

hyperplane, each two new residues are formed from the sequence of equations (1.1,1.2), (1.2,1.3),

(1.3,1.4), etc. This process works faster with larger values of co and is the basis for program simconj

given in the appendix. A proof of convergence for the above procedures is given below.

Let Xo* be the new guess point arrived at after one iteration of the qmconj process. Since the vectors
AB, BC and AC may written as

ab = xB - xA,

bc = x c - xB,

ac = x c - xA,

abl = _/(ab.ab)

acl = _/(ac.ac)

adl = co abl2/acl

Thus, xo* = xA + _ abl 2 (Xc - xA) / acl 2 = Q Xc + (I - Q) xA, where, f2 = co abl2/acl 2.

Note the structure of the acceleration in the last step above emerges exactly like the point successive

over-relaxation scheme, where the position vectors for points C and A serve the replacement for the

Gauss-Seidel and Jacobi iterations before. With the matrices substituted for a 4 x 4 system the three

basic steps to the solution of the new guess vector would be given by

bl b 2 b 1

(a u au) in (a n (a u au) In

where, the repeated index i indicate summations over i =1,4 and the matrices M_ and M2 are

12

2

(I-alz) -%ta12 "a.alj _u___al.__
alPu alPu alPu at#11

z
"_11_12 (I- a12) "_12_I$ "_1_14

_l_lf _l_lt _l_lt GI_Id

2

"alldl$ "G1_13 (I G15) "G1_'14

al#,! al_t, al#u a_u

2
"I_11_14 =G1_14 "_1_14 (1 G14)

and,

2

_=[

_ _ (I_) "_'_'

Similarly, M_ and M 4 matrices may be written foflowing similar structures as MI and M 2. Thus the

final expressions for the three steps Xo*, Xo'" and Xo***before arriving at the upgraded initial guess

may be derived. Finally the iteration matrix for the program qmconj may be obtained as

Tq,, = (1 - _)*_ (MtM4Mt)(M1M3Mt)(MtM2M0. In a similar manner the iteration matrix for the
program simconj may be written as T= = (1 - _)_" (M3M4M3)(M2M3M2)(M_M2Mt).

Several computational experiments were performed to claim the convergence of the above iterative

processes. It was shown that in each case the matrices were convergent. The norms of Tqm and T_

were very small indicating rapid reduction of the residuals. Thus the procedures qmconj and simconj

could be applied for small matrices fairly reliably, each time converging. Another advantage of these

schemes over other previously discussed iterative methods was they could be applied for iU-

conditioned ma_ (see next section) as well as general solution procedures, where typically Gauss-

Seidel type methods would fail due to the lack of diagonal dominance and conjugate gradient type

13

methodswould fail dueto thelackof symmetry.However,theproceduresarenot very efficient
computationaUyspeciallyfor largematrices.Thusalthoughtheschemeswererobusttheywerealso
computationallyexpensive.Nonethelesstherewasan importantlessonto be learnt from these
exercises,which reflectedin basicgeometricalinterpretationsof theconvergenceprocessesin a
relaxationmethod.

Returning to the planarcaseof theabovemethods,we mayobtainanotherarrangementby this
processto reachO.Insteadof obtainingthepointA andthenusingit to obtainpoint B, let SA and
SB be two perpendicularsfromSontoOPandOQ.Thenthearrangementwould look like

Y
Q

11

P

Flllmt 2.

Note that the distance SA represents the perpendicular distance of a point from a line. In higher

dimensions, the corresponding distance represents the perpendicular distance of the point S from the

n-dimensional hyperplane. If the figure 2 is interpreted another way, one would discover a nice

geometrical feature imbedded in it. The perpendiculars SA and SO tend to suggest that OS resides

on the diameter of a circle. In fact the points S, A, B and 0 are all on this circle with the diameter OS.

If there was a way to quickly obtain the center C of this circle, obtaining the solution 0 is just a

matter of doubling the distance from S to C. This also raises the question that although the above

geometric reasoning holds for a circle, will it also hold for a sphere in n-dimensions. It turns out that

the point C wouM become the circumcenter for the n-dimensional solid. The name circumcenter

arises from the fact thaL for a triangle, the circumcenter is the perpendicular bisector of all the three

sides, and is at an equal distance from all the three vertices. The process to obtain C in n-dimensions

was first implemented in the program gsol2v as a direct solver. There are two options to solve for the

circmaxmnter. The first one is using the orthonormalization process as mentioned above. An alternate

procedure is to calculate the Menger's determinant [8]. This process determines the circumradius first.

However the solution of the resulting system must again be carried out using some speedy iterative

procedure. Thus the direct solver was later modified as an iterative process in the program gsol to

obtain the circumcenter using the current solver in PMARC.

The direct solution of the circumcenter C is found by going to the midpoints of each segment SA, SB,

14

etc.for then perpendicularsto thehyperplanesfor whichlinearsystemthesolutionissought.This
resultedinaGram-Schmidttypeorthogonalizationprocedure.Theequationscanbe cast into a simple

form starting from the point S. If the base points of perpendiculars to all the hyperplanes are

obtained, each two new basepoints will make a triangle with the first basepoint of which the

circumcenter is equidistant from the vertices. However for storage purposes of the large matrices,

all basepoints are not calculated upfront. First the perpendiculars to the first two hyperplanes, A and

B are obtained. Starting from A, the midpoint of segment AB is calculated. As each new base point

C is introduced with the two original basepoints A and B, a scalar multiple _. is used to determine the

proportional distance of the circumcenter on the normal to AB by the formula

x,'x) - Cx,'x,)]- Cx,- x,).mc

(,,lCe"d_'ll H

where, me and nu are the midpoint of segment ab and unit normal to segment ab. The process is

repeated as new points are read in. The total amount of computational effort is minimized by the

nested looping in the program.

Defective Matrices

As mentioned in the introduction, the difficulties of the PMARC convergence was believed to be

the in-conditioning of the coefficient matrices. It was proved later that the WICS calculations will

always involve diagonally dominant coefficient matrices. Such matrices will not typically have

small determinants. Thus the small perturbations in the coefficients will not produce large

perturbations in the solution vector. However, since this research started before the stage when

the well-conditioning could be claimed, the schemes developed under this research were tested

with Hilbert matrices. A Hilbert matrix is very ill-conditioned and solutions are almost impossible

for larger systems. The tests with Hilbert matrices were performed for a maximum of 20 x 20 size.

It was believed that if a solution scheme successfully performed with a Hilbert matrix, it probably

was very robust.

The Hilbert matrix has A's coefficients of the following form: a_ = 1/(i+j-1), [ls i,j s n] with the

fight hand vector b varied differently for different computational experiments. Three categories of

the b vector was tested - i) larger terms toward the top of the column, ii) even size terms in the

column and iii) larger terms toward the bottom of the column. It was found that the last category

was the most difficult to solve in most of the cases. Both the routines simconj and congrad

performed better than the Gauss Seidel technique when the matrix sizes increased. In this context

it may also be mentioned that simconj or qmconj type approach has an additional advantage.

These procedures will hold even if the linear system is over-determined, meaning that there are

more number of equations than the number of unknowns. Then although standard reduction

15

processeswould not work, theseprocedureswill producea "limit cycle"solutionwithout much
difficulty. Note that theconjugategradientmethodis especiallysuitablefor a symmetricmatrix
even though the matrix is ill-conditioned.In the caseof an asymmetricmatrix, the conjugate
gradientmethodfails.TheresultsaresummarizedinTable2 in theappendix.

Results and Discussion

As mentioned previously, this work was started as the current solver in PMARC produced

difficulty in convergence in certain configurations of WICS calculations. The nature of the current

solver in PMARC was not known to the author. WICS calculations are based upon a procedure

similar to the error equation approach mentioned earlier in the section discussing direct solvers.

Thus it was important to test the convergence when the parameter solres was tightened. This

action typically produced oscillatory behavior and no convergence for certain singularities. The

f'trst part of this investigation was theretbre to determine the cause of the failure in the WICS

computations. This was done by extracting a typical coefficient matrix that was utiliTed during the

WICS calculations with doublets. This matrix was subsequently subjected to a direct Gaussian

elimination technique and the QR decomposition technique outside the PMARC set of

calculations. The prescription of the gridding and section definitions in PMARC were changed

and a double precision arithmetic was used. From these actions the convergence difficulties were

overcome. An independent look at the structure of the coefficient matrices showed that the

diagonal dominance can always be guaranteed in such calculations. The difficulties experienced

earlier can be ascribed to the loss of orthogonalization typical to a Lanczos process.

The appendix lists samples of the programs conj, qconj, qmconj, simconj, gsol2v and gsol. The

results produced by these programs are compared with the Gauss-Seidel iterative technique and

the conjugate gradient method (see congrad in the appendix) for small matrices. Also tests were

performed for some sparse (9 x 9) planar truss problems, the ill-conditioned Hilbert matrices and

some medium size [(79 x 79) and (84 x 84) respectively] external flow calculations over NACA

0012 and NACA 2412 airfoils. Finally some solutio_ on the PMARC calculations with a (2004 x

2004) matrix are presented. Then the comparisons are made of the Gauss-Seidel method, the

S.O.R method, the conjugate gradient method, the direct solver gsol2v, the direct solver in Gauss-

Jordan method, the iterative solver gsol and the current PMARC solver.

First consider the Table 1 in the appendix. The reason 4 x 4 matrices were chosen for most of the

testing in this table is because a size 4 x 4 is general enough for the theory to hold even in higher

dimensions and yet the calculations are not time consuming. Thus many comparisons could be

made. Also note that the calculations presented in the tables are a subset of the case files available

in the author's directory with more details. In all calculations in this section, the convergence
criterion was chosen to be 0.5 x 10.5 in the 2-norm of the residual vector. Also smaller matrices

were run with single precision arithmetic whereas, the large matrix in Table 3 results below were

all run with a double precision arithmetic.

16

As one can seefrom Table1, thenumberof iterationstakenby theexamplesof 4 x 4 matrices
simconj and qmconj performed better than the number of iterations taken by the Gauss-Seidel method

in most of the cases. These routines also pertbrmed much better than simple relaxation method conj

and an early variant of the geometrical approach, qconj. The rapidity with which these calculations

were achieved could be compared with the conjugate gradient method if proper acceleration

parameters were selected. Best acceleration parameter choices were dependent on the type of the

matrices selected. In general, for the 4 x 4 cases the tz selection was around 1.2 - 1.3 for qmconj and

around 1.6 - 1.7 for the program simconj. Exact values for each case is included in the caseftles.

The off-diagonally dominant matrices did not yield solutions by the conventional iterative methods

such as Gauss-Seidel and S.O.R. methods, whereas these two routines consistently produced

solutions. Also note that qmconj and/or simconj typically take fewer iterations to converge than

Gauss-Seidel method even for the 4 x 4 diagonally dominant matrices. As the matrix became sparse

though, the Gauss-Seidel method yielded better performance (see the 9 x 9 planar truss example). An

interesting case applies to the diagonally dominant Hilbert type 20 x 20 matrix, where the original

diagonal elements of the Hilbert matrix was modified to maintain diagonal dominance. In this case,

the best performance was by the use of the conjugate gradient method confirming the superiority of

this method for symmetric systems. Another interesting case was that of the under-determined system.

In such situations, the matrix reductions produce a null row suggesting no unique solution of the

system. Thus conventional methods would not work again. However these geometry based methods

did not produce a division by zero, and quickly produced a solution satisfying the equations.

For the external panel method solution applied to the NACA 0012 airfoil, the best performance was

_om using the qmconj matrix among the geometry based methods. For some reason, believed to be

rounding errors, the program simconj did not perform very weLL Also note that for the well

conditioned matrices the Gauss-Seidel method performed better. For the corresponding cases of the

asymmetric NACA 2412 airfoil, qmconj arrived at the solution with fewer iterations in both 0 ° and

90 ° orientations. In summary, the routines qmconj or simconj achieved the objectives of robust

calculations typically for the off-diagonally dominant cases when the conventional iterative methods

had either no solutions or, had difficulty in arriving at them.

Table 2 quotes the results for some Hilbert matrices. As mentioned before, these matrices were run

with three different choices of the right hand vector. The reason for this choice was to effect the ill-

conditioning from mild to severe. In mild N-conditioning the right hand column vector had larger

elements toward the top rows and for the severe conditions the larger elements were toward the

bottom rows. The tight convergence criterion was relaxed a decimal digit (i.e., e = 0.5 x 10-4) to

allow faster convergence in the matrix sizes larger than 2 x 2. Also the larger matrices were run with

mild ill-conditioning to speed up calculations. The calculations showed an advantage of using the

qconj and qmconj routines. The routine qconj is clearly the best performer in all computations except

the case 4 for a 3 x 3 matrix. This success may he attributed to the structure of the cycling in this

program. All the geometry based routines suffer error accumulation and this routine helps reducing

it through cycling. As the matrix s'__e,sgrew much bigger with ill-conditioning, these routine suffered

17

larger round-off and took too long to converge.This promptedthe strategychangeand the
developmentof thesecondgeometrybasedsolvergsol2v (see Table 3).

gsol2v is called a direct solver because the determination of circumcenter and the circumradius are

obtained by direct application of Gram-Schmidt type orthogonalization process. This method was

sought as a new approach to obtain solution of linear systems. Although the picturization of the

circumcenter concept is not possible for higher dimensions, the success of the approach shows that

the low dimensional geometric reasoning can be extended algebraically to higher dimensions. Several

issues of convexity must be discussed to obtain the algebraic proof of concepts for conventional

iterative methods. The attempt here was to bypass these by the current geometrical approach. From

this standpoint, this approach was successful. A new correlation between the geometry of spheres and

solution of linear system was obtained. In planar dimensions, the nine-point circle establishes the link

between the centroid, the orthocenter and the circumcenter. In higher dimensions, the distances and

scalar products were needed instead of angles.

The use of gsol2v required much larger solution time compared to the direct solvers like Gauss-

Jordan method. It may be mentioned here that among all direct solvers simultaneously involving the

compete set of coefficients in the matrices, the Gaussian eliminatiqn or Gauss-Jordan methods are

the most economical Thus it was expected to be slower than those methods. However the argument

in favor ofgsol2v was that it could be applied without pivoting strategies. To improve the speed of

this solver, the geometrical concepts in this method were combined with an excellent iterative solver.

This is the idea behind the program gsol. Also note that although the direct solver gsol2v took more

time than the program impjord, it was less time consuming than both point iterative methods such

as Gauss-Seidel or the S.O.R. method (with the optimum acceleration parameter --. 1.6).

The algebraic iterative solver used in the lineq routine of PMARC has an excellent structure. It

requires very little storage and is computationally very efficient. Whereas a traditional Gauss-Seidel

method took over 15 hours for solving the 2004 x 2004 matrix, this solver obtained the solution in

4 minutes. The secret of this solver drew the author to study the eigenvalue based methods after

Nesbet, Shavitt, Bender and Davidson [3 - 6]. There are a set of programs nesbet, nespy, nesl, nes2,

etc. and the resulting output files available for these methods in the authors directories. These

programs calculate the lowest eigenvalues and eigenvectors for large symmetric and asymmetric

matrices. However the current solver fills the voids suffered in all those earlier programs. All of those

[3 - 6] started the search for eigenvalues from the Raleigh quotient approach. However considerable

difficulty was experienced trying to simultaneously change all components of the search vector. The

current program can also handle asymmetric matrices. It starts from small matrices and applies

corrections to the search direction as the matrix grows. It is also fully optimized for large matrix

calculations. Note that although it uses the Gauss-Jordan method internally to invert matrices, the

calculations take practically no time (see the impjord results in Table 3) since the main time

consuming calculations are performed on much smaller matrices. The design of this procedure even

offers advantages in restarting the unconverged solutions. Combining the geometrical approach in

gsol2v therefore with this solver yielded the apparent benefits. The resulting process took just one

more iteration to converge the 2004 x 2004 matrix. Also the calculation time to converge was

18

reducedfrom morethan3 hoursfor gsol2v down to 4 minutes in gsol.

Note the contrasted results by the conjugate gradient method in Table 3. Since the PMARC matrices

are not symmetric for WICS calculations, conjugate gradient method could not be applied directly.

The program mixcon therefore modified the solution approach by premultiplying the system A x =

b by A r. This resulted in a symmetric system which could then be solved by the conjugate gradient

method. This approach yielded the results of the matrix in 1 hour and 47 minutes and using 99

iterations. However if we subtract the time required to obtain the products ArA and AXb, the basic

conjugate gradient process took only 12 minutes. Thus calculations of such large matrices proved to

be extremely sensitive to arithmetic operational counts. This also shows that besides the current

solver, the next best approach in solving large systems will perhaps have to be based upon the

conjugate gradient method. The program gsol offers the quickest alternate solution (in a single step)

as long as the circumcenter could be obtained quickly. Further expansions are possible for this idea.

Concluding Remarks

The current investigation was prompted by a difficulty in convergence of PMARC matrices when

applied for WICS calculations. The objective was to develop a robust solver that would work

typically when other iterative methods failed to produce solutions. This objective was fulfilled by

developing a geometry based solver in the approaches of conj, qconj, qmconj and simconj. There

was an alternate geometrical approach developed parallel to the conventional algebraic

approaches for iterative methods in the programs gsol2v and gsol. Throughout this investigation,

an attempt was made to re-visit geometrical topics as a means to enhance physical and intuitive

understanding of the convergence processes. The most recent and more complex methods are

perhaps more sophisticated computationaUy. However a renewed exploration of geometrical

concepts probably contributes to a much better understanding than abstract ideas offered in them.

Acknowledgements

This work was supported in part by the NASA cooperative agreement NCC 2-937. The author is

grateful to Alan Boone for acting as the technical monitor and for introducing him to the WICS

project. He is also thankful to Robert McMann and David Banducci for providing help in

f'mancial matters, Dale Ashby and Charles Bauschlicher for helpful discussions, Linda Thompson

for providing excellent support of computer accounts and Charles Haines for providing the release
time.

19

References

1. Ashby, D. L., Dudley, M. R., Iguchi, S. K., Browne, L. and Katz, J., "Potential Flow Theory

and Operation Guide for the Panel Code PMARC," NASA TM 102851, NASA Ames Research

Center, Moffett Field, California, January 1991.

2. Varga, R. S., "Matrix Iterative Analysis," Prentice Hall Inc., New Jersey, 1962.

3. Nesbet, R.K., "Algorithm for Diagonalization of Large Matrices," Journal of Chemical Physics,

volume 43, pp. 311-312, 1965.

4. Shavitt, I.., "Modification of Nesbet's Algorithm for the Iterative Evaluation of Eigenvalues and

Eigenvectors of Large Matrices," Journal of Computational Physics, volume 6, pp. 124-130,

1970.

5. Shavitt, I., Bender, C.F., Pipano, A. and Hosteny, R.P., "The Iterative Calculation of Several of

the Lowest or Highest Eigenvalues and Corresponding Eigenvectors of Very Large Symmetric

Matrices," Journal of Computational Physics, volume 11, pp. 98-l.08, 1973.

6. Hestenes, M.R. and Karush, W., "Method of Gradients for the Calculation of the Characteristic

Roots and Vectors of a Real Symmetric Matrix," Journal of Research of the National Bureau of

Standards, volume 47, no. 1, pp. 45-61, 1951

7. Davidson, E.R., "The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding

Eigenvectors of Large Real-Symmetric Matrices," Journal of Computational Physics, volume 17, pp.

87-94, 1975.

8. Berger, M., "Geometry I & II" (2 volumes), Springer Verlag Inc., New York, 1980.

Appendix

This appendix contains tables used for comparing results and samples of 7 fortran programs conj,

qconj, qmconj, simconj, gsol2v, congrad and gsol. The solvers for Gaussian elimination, all of the

eigenvalue based methods, lineq, QR Decomposition method, Gauss-Seidel and S.O.R. methods

are not presented here for compactness and are available in the author's directories. Also all the

details of the casefiles reported in the tables below may be found there.

20

Table 1
Comparison of Various Methods for Small Matrices

In the following results, the matrices are specified by their coefficients. The strategy was to

compare the number of iterations to convergence and typically choose off-diagonally dominant
matrices so that the robustness of calculations could be tested. Most cases started with the same

starting solution: x_ = x2 = = x_ = 1.0 (unless specifically mentioned in the caseffles). The

convergence criterion was 0.5 x 10.5 in the 2-norm of the residual. Also the acceleration

parameters used in these were near optimal and mentioned in the caseffles.

Size Coefficients of A and b

(Comments)

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

9x9

9x9

20 x

20

2,1,-3,1;1,2,5,- 1;- 1,1,1,4;2,-3,2,-5

1,7,5,-4 (off-diagonal dominance)

1,1,1,1;2,1,-1,1;-1,2,3,1;3,2,-2,-1

2,2,1,8 (similar to above)

-1,-4,2,1;2,-1,7,9;-1,1,3,1;1,-2,1,-4

-32,14,11,-4 (mild off-diag dom.)

1,1,1,0;-3,- 17,1,2;4,0,8,-5;0,-5,-

2,1

3,1,1,1 (mild off-diag, dominance)

No. of Iterations to Converge Method

conj qmconj simconj G.S. C.G.

n.a.

208

42

97

28

38

15

27

12

7O

33

failed

failed

failed

failed

failed

n.a..

failed

failed

2,-1,0,0;-1,3,-1,0;0,-1,3,-1;0,0,-1,2 30 13 6 15 5

- 1,4,7,0 (diagonally dominant)

2,- 1,0,0;- 1,4,- 1,0;0,- 1,4,- 1;0,0,- 1,2 30 13 6 10 5

3,5,- 15,7 (diagonally dominant)

2,-2,- 1,3;- 1,0,- 1,1;3,-6,2,4;1,-4,3,1 22 8 5 failed failed

5,0,7,2 (under-determined system)

1,1,1,1; 1,1,- 1, I ;- 1,2,3,1 ;3,2,-2,- 1 52 24 33 failed failed

3,2,-2,- 1 (off-diagonal dominance)

Truss Problem (no re- 148 117 145 failed n.a.

arrangement)

Truss Problem (eqns. re-arranged) 139 127 53 16 n.a.

Re-arranged Hilbert Matrix n.a. large large n.a. 21

21

79 x
79

79 x
79

NACA 0012Airfoil (Panel

Method for External Flows)

NACA 0012 Airfoil (Panel

Method with _ = 90 °)

84 x NACA 2412 Airfoil (Panel

84 Method)

568

906

856

72

83

103

400

938

880

44

53

n°a°

n°c°

rl°c°

n°c°

n.a. = not available, n.c. = non-convergent

Table 2
Comparison of the Methods applied to Hilbert Matrices of different sizes

Size Iterations to converge method to specified criterion

(Comments) G.S. conj qconj qmconj simconj

2 x 2 type 1 37 624 13 5 18

2 x 2 type 2 34 559 17 7 16

2 x 2 type 3 36 697 21 7 20

3 x 3 199 n.c. > 10,000 49 104

4 x 4 126 n.c. 14 203 109

6 x 6 427 n.c. 27 129 1048

10 x 10 261 n.c. 70 75 423

20 x 20 515 n.c. 52 512 1722

n.c. means no convergence was achieved in 10,000 iterations.

22

Table 3
Comparison of Various Methods for a PMARC Matrix of Size 2004 x 2004

Program Name Method Used Number of Iterations Solution Time

to convergence

gssd Gauss-Seidel Method 6936 15 hours 11 min.

sot S.O.R. (_ -- 1.6) 5554 6 hours 22 min.

gsol2v Finding Circumcenter Direct Solver 3 hours 37 min.

mixcon Conjugate Gradient 99 1 hour 47 rain (*)

impjord Gauss-Jordan Meth. Direct Solver 1 hour 55 min.

gsol Circumcenter Method 41 ~ 4 minutes

lineq Davidson's Approach 40 ~ 4 minutes

* The time taken by the iteration portion only was 12 minutes.

Program Listings:

¢

3

10

(2

cl

1

101

100

4

program conj

tmrameter n = 20

dimension a(n,n), b(n), x(n), y(n), res(n)

OPEN(UNIT= 13 ,FILF_'a.dat',STATUS ='OLD3

OPEN(UN IT= 14 ,FILF:'o.dat',STATUS='OLD3

read (13,*) ((a(i,I), j = l,n), i = l,n)
read (14,*) (b(i), i = l,n)

write(6,3)((a(i,j), j= 1,n),i= l,n)
format(Ix, 9t'8.3)

write(6,3) (b(i), i=l.a)

The above line format must be changed

write(6,10)

format(If Results using the Program conj.f :' //)

initial guess
itr=O

do 1 i= 1,11

x(i)--O.O
x(i)= 1.0

k=l

continue
sum=O.

ysq=O,
do4 i=l,a

y(i)=a(k,i)
doSi= l,n

23

5

6

c8
c8

c

8

11

12

13

2) acom.r

c

3
C

c

21
e

c

cc

2
100

1
cl
C

c

c

ysq=ysq+y(i) *y(i)
sun'r-.mm.+ y(i) *x(i)
res(k)=b(k)-sum
do 6 i= l,n
x(i)=x(i)+res(k)*y(i)/ysq
if(k.eq.n) go to 8
k=k+!

go to lO0
if(itr.eq.lO00) write(6,*) (x(i),i=l ,n)
write(6,*) (res(i),i= I,n)
write(6,12) (x(i),i= 1,a)
re.smx=O.
do 11 i=l,n
re*mx=reamx+res(i) *re,(i)
continue

resmx=sqrt(re.wax)
itr=-itr+1

if(iUr.lt 10) write(6,*) itr, resmx
if(reamt.gL0.00005 .and. itr.lt 10000)go to 101
write(6,12) (x(i),i= 1,n)
format(2x,'solution: ',5fl 2.5)
write(6,13) itr
format(' The above was olxained in ',i6,' iteratiotxs')
stop
end

c

4

program qconj
pavame_ n= 20
dimension x0(n), xa(n),xb(n),xc(u),ab(n).bc(n),ac(u),a(n,n).b(n),

y(n),res(n),err(n)
OPEN(UNIT= 13, _'a.dat',STATUS='OLD3
OPEN(UNIT= 14, FILE=$.dat',STATUS='OLD')
read(l 3,*)((a(i,j),j= i ,n),i= l,n)
read(14.*)(b(i),i= 1,n)

write(6,3)((a(i,j),j= l,n),i= l,n)
f_,rr'm(l x,gt_.3)

write(6,3)(b(i),i= l,n)

write(6,21)
format(//Sx,'Results wtth Program qconj.fl/)

a and b store the original Ax = B
initial guess
om=l.6
om=1.333
om=l.6

do 1 i=l,n
x0(i)--0.0
x0(i)=i.0

if n is even, proceed exactly. Ira is odd, set last cycle steep descent

ist = a/2

iodd=n - 2*ist
write(6,2) ist,iodd
format(' ist, iodd=',2i5)
continue

do 200 ie= 1,tst
k=2 *(ic-1)* 1

kpl=k+ I
writ_6,*)its,k,kpl
do4 i=l,n
y(i)=a(Li)
sum=O.

ysq=O.

24

5

c

6

41

51

c

61

42

52

62
c

43

53

63
c 46
c 47
c

200
¢

c

c

44

54

64

do 5 i= l,n

ysq=ysq+y(i)*y(i)
surn=su m+y(i)*x(Xi)
resOO=;.,(k)-sum
wnte_6, *)(xO(i),i= 1,a)
do 6 i--l,n
xa(i)=xO(i)+res(k) *y(i)/ysq
do41 i=l,n

y(i)=a(kpl,i)
sunl=:O.

ysq=O.
do51 i=l,n

ysq=ysq+y(i)*y(i)
sum=sum+y(i)*xa(i)
res(kpt)=b(kpl)-sum
write(6,*)(xa(i),i= 1,a)
do61 i=l,n

xb(i)=xa(i)+res(kpl)*y(i)/ysq
do 42 i=l,n

y(i)=a(k,i)
_m=O.

ysq=O.
do 52 i= ! ,n

ysq=ysq+y(i) *y(i)
sum=s_m+ y(i) *xb(i)
res(kY=-bOO-sum
do 62 i= l,n

xe(i)= xb(i)+ re.s(k)*y(i)/ysq
calculate ab, be, and ac (vectors & lengths)
do43 i=l,n
ab(i)=xb(i)-xa(i)
be(i)=xeO)-xb(i)
ac(i)=xe(i)-xa(i)

ysq=O.
do 53 i=l,n

ysq=ysq+ae(i)*ac(i)
sura=_m+ab(i)*at_i)
abt=.Wt(sum)
acl=sqft(ysq)
adl=om*abi*abl/ad

do63 i=l,n
xO(i)=-xa(i)+ adl*ac(i)/acl
do47 i=l,a
x(Xi)=xb(i)

continue

now s_re the odd-balls

if(iodd.eq. 1) then
do 44 i=l,n
y(i)=a(a.i)
sum=O.

yat=O.
do 54 i= l,n
ysq=ysq+y(i)*y(i)
suw-.-_um+y(i) *xO(i)
res(n)=b(n)-sum
do 64 i= l,n
xO(i)=x(Xi)+res(n) *y(i)/ysq
end if

Ernz Calculation

do65 i=l,n
sum=O.

do 55 j= l,n

25

55 sum=sum+a(ij)*xOO)
65 err(i)--abs(b(i)-_am)

c write(6,56)(err(i),i= l,o)
56 format CErrors:',5 fl 0.5)

errtot--O.

do66 i=l,a

66 errtot=errtot+err(i)*err(i)
ema=_(errtoO
if(errtot.lt.0.00005 .of. itr.gt. 100000) go to 67

c write(6,*) i_, emot
itr=itr+ 1

goto 100
67 write(6,68)(xO(i),i= l,n)
68 format(' Solution:',5fl 1.5)

write(6,69) itr,om
69 format(5x,'Obtained in ',i5,' iterations, with om=',fl0.3)

stop
end

3) _aao.aff

[x'ogram qmconj
petarneter n= 20
dimensioa xO(n), xa(n),xb(n),xc(n),ab(n),bc(n),ac(n),a(n,n),b(n),

1 y(n),res(n),err(n)
c real*8 sum,ysq,om, abl,acl,adl

OPEN(UNIT= 13, _..,E='a.dat',STATUS='OLD')
OPF_2q'(U'NIT=14, FILE='b.dal',STATUS='OLD')

c OPENOJNIT= 15. FILE='xinAat',FO1LM=T.ORMATI'ED',STATUS='OLIY)

read(13,*)((a(id),j= l,n)d= l,n)
read(14,*)(b(i),i= 1,n)

write(6,3)((a(i,j),j= I,n),i=l,n)
3 format(l x,gfs.3)

write(6,3)(b(i),i=l,n)
c

2 fot-mat(//5x,_Results using the Program qmoonjJ'//)
c

c a and b store the origiml Ax = B
oe initial guess
case4 ore= 1.22
cahilb4 om=1.97
casel om=1.68

calm om=1.29
om=1.3
ofa=1.75

c ont=1.0

itr=-I
c read(l 5,*)(xO(i),i= l,n)

do 1 i= 1,n
1 x0(i)=O.

c I xO(i)=1.
c write(6,3)(x0(i),i= l,n)
c

100 cot_mue
do 200 k=2,n

c write(6,*) itr, k
do4 i=l,n

4 y(i)=a(1,i)
stlm=O.

ysq=0.
do 5 i=i,a

ysq=ysq+y(i)*y(i)
5 sum=sum+y(i)*xO(i)

res(l)=b(1)-sum
c writ_6,*)(x0(i),i= 1,n)

do 6 i= i ,n

26

6

C

41

51

C

61

C

42

52

62

C

C

43

53

63

C

C

2OO

C

C

C

55

65

C

C

56

66

C

67

68

xa(i)=xO(i)+res(1)*y(i)/ysq

do41 i=l,n

y(i)=afk,i)
sum=O.

ysq----O.

do51 i=l,n

ysq=ysq+y(i)*y(i)

sum=sum+ y(i)*xa(i)

res(k)=b(k)-sum

write(6,*)(xa(i),i= l,n)

do 61 i= l,n

xb(i)=xa(i)÷res(k)*y(i)/ysq
write(6,*)(xb(i),i= 1,n)

do 42 i= 1,n

y(i)=a(1,i)
sum=O.

ysq=O.

do52 i=l,n

ysq=ysq+y(i) *y(i)
sum=sum+y(i)*xb(i)

res(1)=b(1)-sum

do 62 i= l,n

xc(i)-- xlgi)+ res_ 1) *y(i)tysq
write(6, #)(xc(i),i= 1 ,n)

calculate ab, bc, and ac (vect_ & lengths)
do43 i=l,n

ab(i)=xb(i)-xa(i)
bc(i)=xc'(i)-xb(i)

ac(i)=xc(i)-xa(i)
sunt=O.

ysq=O.
do 53 i=l,n

ysq=ysq+ac(i) *ac(i)

sunr-sam+ab(i)*ab(i)

abl=sqrt(sum)

acl=sqa't(ysq)
adl=om*abl*abUacl

do63 i=l,n

xO(i)=xa(i)+ adl *ac(i)/acl

write(6,*)(xtXi),i= l,n)

continue

Error Calculation

do65 i=l,n
s'um=O.

do 55 j= l,n

sum=sum+a(ij)*xO(i)

err(i)=abs(b(i)-sum)

write(6,*)(xO(i),i= l.n)

writ_(6,56)(crr(i),i= l,n)

format(' Etrct_:',5fl 0.5)
errtot--O.

do 66 i=l,n

errtot---n'ttot+err(i)*err(i)

errt_=sqn(errtot)

if(itr.lt.lO)write(6,*)itr,re'tot

if(errtot.lt.O.O0005.o_.itr.gt,lO00_) go to67

if(errtot.lt.O.O00005.or.itr.gtI00000) go to67

if(errtocgt.I0000.)go to67
itr=-itr+ 1

i.f(mod(itt, lOOO).eq.O) write(6,*) itr, ea'rtot

goto I00

write(6,68)(xO(i),i= l,n)

f_mat(' Solution:',5 fl 4.5)

wnm(6,69) errtot, itr,om

27

69 fcrmat(3x,_-r=',fl0.6,'Obtainedin=,i7,'iteratic_ns,om=',fS.3)
stop
end

4)_zmun._

C

3
c

c

2
c

c

cc

ccgm

cbl2

ctmn
C

c5

c

chilb4
chilb3
caso4

c20tr

cl
1

C

c

100

c

4

5

c

6

c

41

51

C

program simconj
parametern= 20
dimensionx0(n),xa(n),xb(n),xc(n),ab(n).bcfn),ac(n).a(n,n),b(n),
y(n),res(n),err(n)
real*8sum,ysq,abl,acl,adl,bcl
OPEN05NIT= 13.FILE='a.dat',STATUS='OLD_
OPEN03"NIT= 14,FILE=_o.dat',STATUS='OLD_

OPEN(UNIT= 15,FILE='xin.dat'.FORM=T'ORMATTED',STATUS='OLD')
read(l3,*)((a(i.j)j=l,n),i=l,n)
read(14,*)Co(i),i= I,n)

write(6, 3)((a(i,j),j= 1,n),i=i ,n)
fcwmm(lx,9f'8.3)
write(6,3)(b(i),i= 1,n)

write(6,2)

format(ll5x.'ResultsusingtheProgramsimconj.l'I/)

a and b store the original Ax = B
imtial guess
om=l.2
ore=l.6
om=l.6

ore=.05
om=l.2
orrs= 1.3
om=1.78
om=1.95
om=1.89
cma=2.9
om=2.368
do 1 i=l,n

x0(i)=O.
xO(i)=l.
read(15. *)(xO(i),i= l.n)
itr-=1

continue
do200 k=l,n-I
Icpl=k+l
write(6,*) itr, k
do4 i=l.n
y(i)=a(k,i)
sum=O.

ysq=O.
do 5 i= 1.n

ysq=ysq+y(i)*y(i)
_rn=,mm+ y(i) *xO(i)
res(k)=bfk)-sum
write(6,*)(xO(i),i= l,n)
6o 6 i=l.n
xa(i)--xO(i)+res(k)*y(i)tysq

do41 i=l,n
y(i)=aOcp I ,i)
sum=O.

ysq---O.
do 51 i=l,n
ysq=ysq+y(i)*y(i)
sum=sum+y(i)*'xa(i)
res(k:p I)=b(k:p 1)-sum
write(6, *)(xa (i),i= 1,n)

28

61

42

52

62

c

43

53

63

c

2OO

c

c

c

55

65

c

56

66

67

68

69

do 61 i=l,n

xb(i)=xa(i)+res(kp 1) *y(i)kysq
do 42 i= I ,n

y(i)=a(k.i)
sum=O.

ysq--O.

do 52 i= I,n

ysq=ysq+y(i) *y(i)

su_m+ y(i)*xb(i)

res(k)=b(k)-sum

do 62 i=l,a

xc(i)=xb(i)+ res(k) *y(i)/ysq

calculate ab, bc, and ac (vectors & lengths)
(1o43 i=l,a

ab(i)=xb(i)-xa(i)

bc(i)=xc(i)-xb(i)

ae(i)=xc(i)-xa(i)
surl3=O.

ysq=O.
do 53 i=l,n

ysq=ysq+ae(i)*ac(i)
sum=sum+ab(i)*ab(i)

abl=sqrt(sum)

acl=.sqrt(ysq)
adl=om*abl*abl/acl

<!o63 i=l,a

xO(i)= _(i)+ adl *ae(i)/acl

continue

Error Calculation

do 65 i= l,n
sutn=O.

do55j=l,n

su_m+a(i,j)*xOO)
etr(i)--abs(b(i)-.sum)

write(6,56)(err(i),i= 1,n)

format(' Etrors:',5fl 0.5)
errtot----O.

do66 i=l,n

erntx=errtot +err(i) *err(i)

errtot=sqrt(errtot)

if(errtot.lt.O.O0005 .or. itr.gt. 1_) go to 67

if(etrtot.gl. 10000.) go to 67

if(itr.lLlO) write(6,*) itr, eft-tot

if(mod(ia',l O00).eq.O) write(6,*) itr,errtot
itr=itr+ 1

go to 100

write(6,68) (xO(i),i= 1,n)

format(' Solutioe:',5fl 1.5)

write(6,69) ernot, itr,om

fotrnat(5x,_'r=',flO.6,' Obtained in ',i7,' iterations, with om=',fl 0.3)

stop
end

111

programco,grad
patame_ n = 20

dimension a(n,n), b(n), e(n), rO(n),pl (n), pk(n), rl(n),x(n)
dimension a.p(n)

open (unit = 3, file = 'a.dat', status = 'old')

cven (unit = 4, file = "b.dat', stains = 'old')

read(3, *)((a(i,j), j= 1,n),i= l,n)
read(4,*)(b(i),i= l,n)

write(6,111)

fctmat(/tresults obtained by eongrad.f:'/)

29

c

1

c

12

13

5

4

c

6

c

7

c

c

c

8

c

c

108

c

100

101

102

I03

I04

tO5

I06

do I i=i,n

x(i) = 0.0

x(i) = 1.0

b(i) =- b(i)

do 100 it=l,lO000

if(it.ge.2) then
sarrrO = O.

sumrl = O.

dol2i= l,n

sun,a'O = surarO + rO(i)*rO(i)
sumrl = sumrl + rl(i)*rl(i)

ekml = sumrl/s_rr¢O

do 13 i= i,n

pk(i) = -r 1(i)+ekml *pk(i)
endif

wrtte(6,*) ekml

write(6,*) (pk(i),i= l,n)

do 2 i=l,a
sum = O.

do 3 j=i,n

sam = sum+a(i,j)*x(j)
tO(i) = sam + b(i)

if(it.eq.t) pk(i) =- tO(i)

pl(i) = - tO(i)

do4 i=l,n
sum= O.

do5j =l,a

sum = sum + a(id)*pk(j)

ap(i) = sum

write(6,*) (ap(i),i=l,n)
stlrrg = O.

sump = O.

do6 i=l,n

surer = suna" + tO(i)*rO(i)

sump = sump + ap(i)*pk(i)

write(6,*) sump

qk = sumr/sump
do7 i= I,n

x(i) = x(i) + qk*pk(i)

r 1(i) = tO(i) + qk*ap(i)

write(6,*) qk

write(6,*)(x(i),i=l,n)

write(&*) (rl(i).i= l,n)
surff = O.

do 8 i=l,n

sumr = sumr + rl(i)*rl(i)

write(6,*) surer
write(6,108)

formic 3

_ = _(_)

itr= it

if(rnod(itr, lO00).eq.O) write(& *) i_,sumr

if(itr.le. 10) write(6,*) i_,surnc

write(6,*) i_',sumr

i/'(sumr.lLO.OO(X)05) go to I01
continue

go to 103

write(6,102) iu

fomm(3x,'solutiou converged in',i4,' iawations')
write(6,105) (x(i),i= m,n)

goto 106

write(6,104) itr

fcrmat(3x,'Soludon did notconv_ge in',i6,' iterations5

fcrmat(5fl4.6)

stop
end

30

C

?

C

C

C

C

C

LO
C

C

19

11
C

L2

13
C

C

C

p_ogram gsol2v
_ n=2004
dimensioQ b(n), u(n).v(n.n),p(n),po(n)
dimensme x(n).a(n).tn(n),t'l (n)f2(n),ab(n).bc(n)

x(i), p(i) a_e the i plus n be_e projection points

open (umt = 3, fde = 'a.dat', status = 'old')
open(unit= 4,file = "_.daf,s-tams= 'old')
open(unit= 7,file= 'gsol2v.o_t',status= 'new')
read(4.*)(b(i),i=l,n)
writef7,ZXl)
focmat(ffresuits obtained by gsol2v.f:'/)
do ! i=l,n
x(i) = 1Jscprt(float(n+I))
pO= xO)

do 9 i= l,n

readO,*)(aO)J=Ln)

do3j=l,n
f2(j)--x(])
_t docp(a,f2,n_m)
calldocp(a,_n,_)
rs=b(i)-sun

createp(n)to_orethen basepoints,oneata time

do2j=1,a
mfJ)---P<J)
doTj=1.n
_)=rs*aO)/su + xO)
wri_6.*)(pq),i=t.u)

S_rt meue._ Looping
Usethevariable v(a.n) to store the or_onccaml base

if(i.eq.I)then
do8j=l,n
ab(i)---p(i)-x(j)

_t doq_ab,ab.n._m)
abl=s_(sum)
tt_.
do lOj=l,n
u(j)=ab(i)/abU
tnfj)=x(j)+d*u_

calculatealanduselaterI

do 19 j=l,a
fl(i)=x(i)
t2(j)=xO)

do 11 j=l.n
v(ij)--u0)

else
j greater than 2 below
do 12j=l,n
bc_)---pCj)-po(j)
can d_b_b_a_um)
do 13j=|,n
u(j)=bc(j)/sqrt(sam)

writ(6,*)' u --',(u(Dj= t,n)
Gnm-Sdm_dt Orthooom,,aliz_

31

15

16
14

17

18

C

c

C

C

2O

21
c

22

23

c

9

c

201

c

c

207

1

do 14 k=l,i-I

do 15 j=l,n
n(i)=u(i)
f2(j)=v(kj)
call dotp(fl ,/2,msum)
do 16 j=l,n
v(id)=v(i,j)+su m*v(k,j)
continue

do 17j=l,n
v(id)=u(j)-v(ij)
flO)=v(ij)
f20)=v(i_)
call dop(tl,f2,n,sum)

do 18 j=l,n
v(id)=v(id)/sqrt(sum)

write(6,*)' v=-',(v(ij)j= l,n)
Proceed with the new vector

do 20 j= i,n
n(j)---pO)
t2(j)=pO)
_l d,xp(fl,t2,_bet)
do 21 j=l,n
fl (j)--_)-x_)
f2(j)=tn(j)
write(6,*)' tn=',(ta(j)j= 1,n)
call dotp(fl,t2,mgam)
rnu=(be_-al)/2. - gain
do 22 j= 1,a
r2(j)=v(ij)
caJ] _p(fl.f2.n.rde)
rl---rnu/rde

do 23 j= l,a
tn(j)=tn(j)+rl*v(i,j)

wnte(6,*ytn=',Ctn(i)j=l,n)
endif
continue

do 201 i=l,n
x(i)=x(i)+2.*(tn(i)-x(i))

write(-/,*) (x(i)j=l,n)
write(6,207) (x(i),i= l,n)
fotn_(2x,5fl 5.5)

stop
end

subroutine dotp(a,b,n,sum)
dimension a(a),b(a)
su_,=O.

do I i=l,n
sum=sum+a(i)*'o(i)
return

end

C
C

Program gsot
Parameter n = 2004

Include '[_tram.dat'
Include 'common.f

Dimension x(n),a(n).f2(n),p(n)
X(i), p(i) are the I plus n base projection points

Open (unit = 3, file = 'a.dat', status ='oid')

32

III

I

C

C

C

12

C

C

C

9

C

C

10

11

Open (unit = 4, file = "b.dat', status = 'old')

Read(3, *')((dubic_v(ij) j= l,n),i= l,n)

Re.ad(4, *)(rhsv(i),i= 1,n)

Write(6,111)

Format(/fresuRs obtained by gso_22.f:7)
Do 1 l =l,n

x(i) = 0.

I3o9 i=l,n

Read(3,*)(a(j)j=l,a)

Do 12j=l,n

A(j)=dubicww(id)

CalldoCp(a,x,n,sun)

Calldocp(a,a,n,su)

_(i)-sun

Create p(n) to store the n base points, one at a time

Do 7j=l,n

P(j)=rs*a(j)/su

Do 8 j=l,n

O)---p)+x(i)
CaJldoq_f2,f2,n,sup)
Calldotp(x,x,n,sux)
Write(v,*):p0)j= 1,n),(sup-sut)fz.
Rhsv(i)=(sup-sux)/2.

Do9 j=l,n

Dubi_._vw(i,j)=p(j)
Continue

Call gso_22

Do I0 i=l,n

X(i)=2.0*dub(i)-x(i)

Write(TZ,lt)
Format(5x,'withtheabove circumcente_,thecalculatedsolutionis:3

Write(78,*)(x(i),i=1,n)

Stop
End

Subroutinedotp(a,b,n,sum)

Dimension a(n),b(n)
Sum=O.

Do I i=l,n

Sum=_m+a(i)*b(i)
Return

End

*deck doublet

Subroutine gso122
C

C

Include 'patam.daf

Include 'common.f

Open(unit= 16, fil_'data6'j'orm='fcrmaued',slams='new3

Open(umt=20, fcx'm='unfcx'matted',stams= _ nknown')

Do2I= i,aspdim

2 Diag(i) = dubicww(i,i)
C

C Rewind all scratch file 20 and assign unit nurn_
C

Imu = 20

Rewind imu

C

33

C Check to make s'ure that ifinramis not 1, that it is sex equal to nspdim
C

If(inram.ne. l)then

If(inram,ne.aspdim)then

Write(16,601)

Stop

Endif

Endif

C

C Start the time step loop
C

Tstime = 0.0

C

C Write input data to output file
C

Write(16,603)
C

603 for.mat(Ix. 10(/),317.,57('*')//

+ 54x,'ixogram pmarc7

+ 45x,'release version 12.21: 03/04/94'//

+ 51x,'malrixsolve_exu'actedfrom pmatc'/)

C

C

Call solver

Open(unit=78, fil_'gsoi.ouf, s-tams ='new')

Write(T8,*) (dub(i),i= l,aslxlim)
C

C Close and delete the scratch files

C

Close(u nit=20,status='delete')
C

Remra

600 format(HI x,'time step',J4)

601 forma_(//1 x,'parame¢_ inram not set to 1 or nspdim in pmarc7

+ I x,'scurce code. Reset this paran'e_r, recompile code'/

+ I x,'and U'y again.')
End

C

*deck solver

Subroutine solver

C

C

c

Include 'param.dat'
Include 'common.f

C

C UIxtate the pdub array so that it always holds the previous step's doublet
C Solution

C

itsu_=o
Npan = aspdim

Do 10 i= l,nl_n

tf(itstep.eq.O)thea
Pdub(i)= rhsv(i)

Else
Pdub(i)= dub(i)

Endif

10 continue

Call lineq(iO

Write(6,555) it

555 Format(lx,'nunt_ of iterations = 'i5)
Write(l 6,600)it

C

Return

600 format(l x.'number o_ solver iterations = '.i4)

End

Subroutine fineq(it)

34

C

C Program to solve linear equations (based oe: j. Comp. Phisics,
C "The itefative ealculatiou of....", 17. Pp. 87-94, 1975)
C For information: call charley battsdalicher (415) 694-6231
C

Include 'peranLdat'
Include 'comrnon.f

C

Dimension v(nstxlim.20), w(m'gxlim,20),a(20,20),al(20),
+ buf(nspdim), gg(20), bull(400), bul2(m_dim), buf3(aSlxlim)

C
It=0

Npaa = mlxlim
Solres = 0.000005
Maxit = 200

Thresh = solres

Matdim = ape_
Ims=O

C

C Initial guess for starting solution vector
C

tf(itstep.gt0)then
Do 10 i=l,maldim

Buf2(i) = pdub(i)
10 Continue

Go to 8130
Endif

Do 20 i= l,matdim
Ahnn = diag(i)
If(abs(ahnn).lt.l.e-7)ahnn = 1.0e-7
Bul2(i) = rhsv(i)/ahnn

20 continue
800 continue

Write(16,600)
WriteO6,60D

Write(6,899)
899 Format(Ix:solution iteration history')
810 continue

[ms=in-a+ I
Can normal(buf2,mataim)
It=it+ 1

Call frnutb(buf2, tmf3jmxdirn, inm)
Do 30 i= l,matdim

W(i,ims) = buf3(i)
V(i,ims) = bul2(i)

30 continue

DO 40 i= l,ims
DO 50 j= 1,matdim
BurO) = v(j,i)
Bttr2Cj) = w(i,ims)

50 Continue

A(i,ims) = sd_(matdim,lxff, 1,bu£2,1)
If(i.eq.ims)goto40
DO 6o j=l,matdim
BufCj)= w0,i)
BueZ(j) = vO,ims)

60 Coetinue
A(ims,i) = sdot(nmtdim,buf, l,bul2,1)

40 continue
Do 70 i= 1,matdim

Bu_¢2(i)= v(i,ims)
70 continue

Gg(ims) = sdot(matdim,rhsv, l,but2,1)
Iq =0
Do 80 i= l,ims

Do 90 j= I,itr_
Iq = iq + 1
Bufl(io) = a(j,i)

35

90 Continue
_d(i) = gg(i)

80 continue

Call gss(bufl ,al,imsde0
If(ie_.eq. l)then

Stop
Enctif

Cony = abs(al(ims))
[fold = 0
If(irm.eq.20)then

Ifold = itm
Call zetv(b_,maldim)
Do 1130i=l,ims

Do 110 j--l,matdim
Bur(j) = w(j,_)

1I0 Continue

Ali = al(i)
Call saxpy(matdim, ali,buf, l,bul2, I)

100 Continue

Do 120j= l,matdim
w0,z) = but2(j)

120 Continue
X=0.0

Y=0.0
Do 130 ifl,irm

Do 140 j=l,itm
X = x+ a6,i)*al(i)*al(i)

140 Continue

Y = y + gg(i) * al(i)
130 Continue

A(l,l) = x
Gg(D = y
hm= 1

Endif
Call zn'o(buf2,_tdim)
Do 150 i=l,irm

Do 160 j= l,matdim
BufCj)= w(i,i)

160 Continue

Ali = al(i)
lf(ifold.ne.0)ali = 1.0
Call saxpy(matdim,ali,buf, l,lml2, I)

150 continue
Coax = 0.0
Ipanel = 1
Do 170 i=l,matdim

ff(abs(rhsv(i)).IL 1.o-7) go to 820
Q = abs((but2(i) - rhsv(i))h'h.w(i))
If(conx.lt.q)then

lpenel = l
Endif

Corn = anmxl (cmr_q)
820 Continue

But20) = but2(i) -th,w(D
170 coetinue

Write(16,602)it,eoay,eomt, ipend
Noconv = 0
If(coax.lt.thres_and.ifold.eq.O)goto830
Noconv = I
If(it.eq.maxit) go to 830
Do 180 i=l,matdim
Alan- = diag(i)
tf(abs(atmn).lt.l.0e-7)atmn= L0e-7
Buf2(i) = btd2(i)/ahaa

180 continue
Call normal(buI2,matdim)
Lp = max0(ifoid,ims)
Do 190 i=l,lp

36

Do 200 j= I.m_dim
But(i)=vO,i)

200 Continue

X = sdot(matdim.buf,i,bu_f2,i)
Callsaxpy(matdim,-x,buf,l,but2,l)
Call n<xmal(buf2,matdim)

190 continue
[f(ifo|d.eq.0)8oto810
Callzefo(bui3,matdim)
Do 210 i=l,ifold

Do 220j=l,matdim
Bur0)= v0,i)

220 Continue

All = al(i)

Call saxpy(matdin_ali,buf, 1.but3,1)
210 cvetinue

Do 230 i= l,matdim
v(i,i)= buf3(i)

230continue
AI(D = i.o
GotoSl0

830continue
Call zero(buf,matdim)
Do 240 i=I,irr_

Do 250j=i,matdim
Bur20)= v0,i)

250 Continue

Alil = al(i)
Call saxpy(matdim.alil,buf2,1 ,but',1)

240 continue
Do 260 i= l,nmdim

Dub(i) = bu/(i)
260 continue

If(noconv.eq.l)then
Write(l 6,603)
Endit

600 forrmU(lhl)

601 fonn_(Ix,'solutioniterationhi_/)
602 fornmtCit=',i5,'al(i)',fl5.8,'hv-g',f15.8,'panel= ',i5)
603 format(if--no convergence_')
Return
End

Subroutine frmab(_b,ma_:lim,_awm)

Include 'pm'am.daf
Include 'common2

Dimensiona(matdim),b(nmutim)
Rewindirawrn

Npan = matdim
Do I0 i=l,npen
li=l

B(i)= 0.0

If(im'am.eq.l)then
Read(irawin)(dubicww(inram,j)j= I,npen)
li= I

Endif

Do 20 j=I,npan
B(i) = b(i) + a(j) * dubicww(iid)

20 Continue

I0continue
Return

End
Subroutine zero(a,len)
Dimension a(len)
Do 10 i=l,len

A(i) = 0.0
I0 continue

37

Return

End

Suh'outin¢ normal(a, len)

Dimension a0en)
X=0.0

Do 10 i= l,len

X = x + a(i) * a(i)
10 continue

X = 1.0/_'t(x)

Do 20 i=l,len

A(i) = a(i) * x
20 continue

Return

End

Su_ontine gs_,g,nmix, i_r)

Dimen_on b(nmix, nmix),g(nmix)
Data zerol/l.0e- 16/

ler=0

Do 10 i=i,nrnix

lf(abs(b(i,i)).lLzerol)go to 800
Fx = l./b(i,i)
Goto 810

800 Continue

If(i.oq.nmix)go to 820
11=I+1

C Pivotsection

Do 20 j=i I ,nmix

If(abs(b(j,i)).ltzea'o l)go to 20

Fx = t :u(j,i)

Do 30 I=i,nmix

Temp = b0 3)

B(j,I) = b(i,l)

BOA) = tml_
30 Continue

Trap = gO)

GO) = g(i)

GO) = tr@
GotoSlO

20 Continue

Go to 820
810 Continue

G(i) = g0) * fx

DO 40 j=imn-fix

BOO) = b(i,j) * f'x
40 Continue

Do 50 j=l,nmix

Lf(i.eq.j)go to 50
Y=b0,i)

GO) = gO- gO) * y
Do 60 k---i,nmix

B(j,k)= b0,k)- y * b(i,k)

60 Contimm

50 Continue

10 continue

Return

820 continue

wdta(t 6,6o0)

600 format(" Abort invert Singular matrix ')
Ier-- 1

Return
End

Subroutine saxpy(a,sa,sx.incx,sy,incy)
C

C

C

C

C

Constant times a vectca" plus a vector.

Uses unrc_led loops for increments equal to one.

Iack dongan'a, linlmck, 3/11/78.

Dimension sx(n),sy(n)

38

C

C

C

C

If(n.ie.0)return

lf(sa.eq.0.0)return

lf(incx.eq, l.and.incy.eq, l)go to 20

Code for unequal in_en_nts or equal increments

Not equal to I

Ix= 1

ly=l

[f(incx.lt.0)ix=(-n+ l) *i,cx+ 1

If(incy.lt.0)iy=(-n+ 1) *incy+ 1

Do 10 i=l,n

S y(iy)=sy(iy)+sa*sx(ix)
Ix=ix+incx

ly=iy+incy
10 continue

Remrn

C

C Code for both increments equal to 1
C

C

C Clean-up loop
C

20 re=rood(n,4)

If(m.eq.0)go to 40
Do 30 i=l,m

Sy(i)=sy(i)+sa*sx(i)
30 continue

[f(n.lc4)remrn

40 mpl=m+l

Do .50 i=mpl ,n,4

Sy(i)=.vy(i)+sa*sx(i)

Sy(i+ 1)=*y(i+ l)+sa*sx(i+ 1)

S y(i+2)=sy(i+2)+ sa*s'x(i+ 2)

Sy(i+ 3)=sy(i+3)+sa*s-x(i+3)
50 continue

Retm'n

End

Real function sdot(n.sx.incx,sy,incy)
C

C

C

C

C

C

C

C

C

C

F(xtra the dot product of two voctot,.

Uses umollod I_ for increments (XlUal toone.

Iack dongarra, lin[mck, 3/11/78.

Dimension s'x(n),sy(n)

stenv=o.0eo
Sdot--O.OeO

If(n.le.O)return

If(incx.eq. l.and.incy.eq, l)go to 20

Code forunequal incrementsorequalin_ements

Not equaltoone_

IX.= 1

Iy=l

If(incx.lL0)ix--(- n-)-1)*in(x+ 1

[f(incy.lt.0)iy=(-n÷ l)*incy+ 1
Do 10 i=l,n

Ste_mp+_(ix) *s'y(iy)
Ix=ix+incx

Iy=iy+incy
10 continue

sdot=stemp
return

Code forbothincrementsequal to I

39

